the packing is roughly but not at all exactly similar. An O(26) atom of the molecule at  $(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2})$  fits into the O(4), O(5), O(14) recess of the origin molecule, but does so unsymmetrically with contacts of 3.13 Å to O(4), 3.04 Å to O(5) and 2.97 Å to O(14). (There are no other contacts < 3.2 Å.) If the fit were symmetrical, the crystal structure would be cubic with a space group  $I\overline{4}3m$ . The latter is the space group of hexamethylenetetramine, where each  $(CH_2)_6N_4$  molecule also has  $\overline{4}3m$  symmetry and each nitrogen fits into a recess formed by three hydrogens of another molecule. The reason for the rhombohedral space group with  $P_4O_{10}$  is that a closer packing can be achieved by the less symmetrical arrangement because of the roughly tetrahedral envelope of the molecule. By twisting adjoining molecules  $\pm 25^{\circ}$  about their [111] axes, the molecular centres come closer together for the same minimum interatomic distance. In hexamethylenetetramine the molecule has a much more nearly spherical envelope and no packing advantage can be gained by a corresponding distortion of the cubic structure.

With this explanation of the packing in mind, we can return to the problem of the apparently unequal

external P–O bonds. It seems unreasonable that the three symmetrical contacts apparently of 2.89 Å formed by O(3) to the molecule above at  $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ should be appreciably shorter than any of the unsymmetrical contacts, 2.97, 3.04 and 3.13 Å, formed by O(6). This suggests that the true position of O(3) is about 0.1 Å nearer P(1), which fits in well with the other estimates of the external P–O bond length.

I am very grateful to Prof. C. H. MacGillavry for drawing my attention to the crystallographic data for  $P_4O_{10}$ .

#### References

- AKISHIN, P. A., RAMBIDI, N. G. & ZASORIN, E. Z. (1959). Kristallografiya, 4, 360.
- CRUICKSHANK, D. W. J. (1956a). Acta Cryst. 9, 754.
- CRUICKSHANK, D. W. J. (1956b). Acta Cryst. 9, 757.
- CRUICKSHANK, D. W. J. (1961). J. Chem. Soc. 5486.
- DE DECKER, H. C. J. & MACGILLAVRY, C. H. (1941). Rec. Trav. chim. Pays-Bas, 60, 153.
- HAMPSON, G. C. & STOSICK, A. J. (1938). J. Amer. Chem. Soc. 60, 1814.

Acta Cryst. (1964). 17, 679

# Refinements of Structures Containing Bonds between Si, P, S or Cl and O or N. VI. $P_2O_5$ , Form III

#### By D. W. J. CRUICKSHANK\*

## School of Chemistry, The University, Leeds 2, England

#### (Received 4 June 1963)

The crystallographic data measured by MacGillavry, de Decker & Nijland (1949) have been used in a structure refinement. The revised dimensions average  $P-O(linked) = 1.56 \pm 0.015$ , P-O(unlinked) =  $1.49 \pm 0.025$  Å and  $\angle P-O-P = 145^{\circ}$ .

The crystal structure of the third form of phosphorus pentoxide was determined by MacGillavry, de Decker & Nijland (1949). At Professor MacGillavry's suggestion the data have been used in a least-squares refinement.

The space group is *Pnam*, with cell dimensions  $a=9\cdot23$ ,  $b=7\cdot18$  and  $c=4\cdot94$  Å. The structure consists of corrugated sheets parallel to (100). One sheet is shown in Fig. 1, projected along the *a* axis. Five of the atoms, P(1), P(2), O(1), O(2), O(3), of the asymmetric unit are fixed in the plane  $z=\frac{1}{4}$ , the sixth atom O(4) is in a general position but very close to the plane z=0.

The data used in the refinement were 115 non-zero  $|F_o|$  for the zero, first and second [001] layers. The scaled  $|F_o|$  and final  $|F_c|$  are given in Table 1. Six cycles

<sup>\*</sup> Present address: Chemistry Department, The University, Glasgow, W. 2, Scotland.



Fig. 1. Structure of a sheet of  $(P_2O_5)\infty$ .

of least-squares refinement were carried out. The maximum shift from the coordinates given by MacGil-

# Table 1. Observed and calculated structure factors (×10)

| 0           | 1           |                |              |     | _              | 0            |                  | _          |
|-------------|-------------|----------------|--------------|-----|----------------|--------------|------------------|------------|
| <u>ьк</u> ⊻ | <u>E</u> ol | E <sub>c</sub> | <u>b k l</u> | E_  | £ <sub>c</sub> | <u>n k l</u> | E <sub>o</sub> ∣ | <u>F</u> c |
| 200         | 451         | -517           | 180          | 429 | -4 58          | 261          | 440              | 387        |
| 400         | 246         | -322           | 780          | 165 | 225            | 461          | 125              | 132        |
| 600         | 510         | -469           | 201          | 528 | 575            | 561          | 158              | 155        |
| 800         | 572         | 432            | 401          | 73  | - 88           | 371          | 404              | 304        |
| 10,0 0      | 128         | -178           | 601          | 429 | -383           | 002          | 917              | -1022      |
| 110         | 315         | 340            | 801          | 220 | -234           | 202          | 176              | 240        |
| 210         | 591         | -648           | 011          | 147 | -135           | 402          | 422              | -367       |
| 310         | 143         | 128            | 1 1 1        | 238 | 352            | 602          | 737              | 664        |
| 610         | 312         | 261            | 211          | 660 | 669            | 802          | 110              | -108       |
| 710         | 297         | -324           | 311          | 293 | -298           | 12,0 2       | 128              | -125       |
| 810         | 227         | 257            | 411          | 429 | -398           | 14,0 2       | 147              | 176        |
| 020         | 697         | -786           | 511          | 110 | 118            | 112          | 34 5             | -359       |
| 220.        | 227         | 256            | 711          | 216 | -291           | 212          | 293              | -261       |
| 320         | 389         | -362           | 811          | 264 | -264           | 412          | 110              | 146        |
| 420         | 429         | 346            | 10,1 1       | 378 | 315            | 712          | 143              | 198        |
| 520         | 264         | 291            | 1 2 1        | 539 | 669            | 812          | 547              | -449       |
| 620         | 110         | 119            | 221          | 125 | -165           | 022          | 143              | -102       |
| 720         | 165         | 187            | 321          | 139 | -183           | 122          | 253              | 209        |
| 820         | 470         | -411           | 421          | 378 | -315           | 322          | 554              | 461        |
| 920         | 235         | 235            | 521          | 393 | -300           | 522          | 569              | -439       |
| 230         | 429         | 441            | 621          | 216 | 242            | 622          | 396              | -314       |
| 330         | 407         | -371           | 031          | 521 | 500            | 722          | 183              | -206       |
| 530         | 429         | 350            | 331          | 114 | -121           | 1 3 2        | 34 5             | 260        |
| 11,3 0      | 308         | -366           | 431          | 279 | 242            | 2 3 2        | 220              | 150        |
| 140         | 183         | -225           | 531          | 238 | -225           | 532          | 506              | -425       |
| 240         | 532         | -471           | 631          | 334 | -284           | 632          | 293              | -300       |
| 340         | 572         | 516            | 7 3 1        | 477 | 352            | 042          | 293              | 284        |
| 440         | 308         | 288            | 141          | 110 | -139           | 242          | 521              | 352        |
| 940         | 257         | -282           | 241          | 216 | -203           | 342          | 756              | -655       |
| 10,4 0      | 147         | -155           | 341          | 213 | 233            | 442          | 682              | -546       |
| 150         | 183         | -225           | 541          | 114 | 154            | 542          | 415              | 319        |
| 350         | 106         | 86             | 641          | 213 | 261            | 252          | 279              | -260       |
| 450         | 268         | 279            | 051          | 150 | -167           | 352          | 202              | 224        |
| 850         | 220         | -213           | 151          | 638 | 457            | 4 5 2        | 187              | -193       |
| 060         | 268         | 243            | 351          | 213 | -210           | 062          | 363              | -340       |
| 160         | 492         | 462            | 551          | 521 | 388            | 162          | 150              | -155       |
| .660        | 128         | -144           | 651          | 231 | 248            | 462          | 227              | 224        |
| 760         | 205         | -278           | 751          | 139 | -181           | 562          | 235              | -283       |
|             |             |                |              |     |                | 762          | 187              | 206        |

lavry et al. was only 0.05 Å. The residual R dropped to 14.5%. The revised atomic coordinates and their e.s.d.'s are given in Table 2. Anisotropic vibrations were allowed for the phosphorus atoms but not for the oxygens. There was some indication that the apparent vibrations were least in the c direction. The individual variations among the atomic vibrations were not significant and the average apparent m.s. amplitude Uwas 0.007 Å<sup>2</sup>. The weighting scheme was

$$w = 1/(22 + |F_o| + |F_o|^2/76)$$
.

#### Table 2. Atomic coordinates and e.s.d.'s

|      | x (Å)                         | y (Å)                         | z (Å)                        |
|------|-------------------------------|-------------------------------|------------------------------|
| P(1) | $2 \cdot 225 \pm 0 \cdot 013$ | $2 \cdot 095 \pm 0 \cdot 014$ | $1 \cdot 235 = \frac{1}{4}c$ |
| P(2) | $3.702 \pm 0.012$             | $4 \cdot 715 \pm 0 \cdot 014$ | $1.235 = \frac{1}{2}c$       |
| O(1) | $2 \cdot 593 \pm 0 \cdot 025$ | $3 \cdot 615 \pm 0 \cdot 032$ | $1 \cdot 235 = \frac{1}{4}c$ |
| O(2) | $3.349 \pm 0.029$             | $1 \cdot 111 \pm 0 \cdot 033$ | $1 \cdot 235 = \frac{1}{4}c$ |
| O(3) | $5 \cdot 104 \pm 0 \cdot 025$ | $4 \cdot 229 \pm 0 \cdot 030$ | $1 \cdot 235 = \frac{1}{4}c$ |
| O(4) | $1 \cdot 272 \pm 0 \cdot 017$ | $2 \cdot 034 \pm 0 \cdot 020$ | $-0.004 \pm 0.038$           |

The dimensions within one molecular sheet are listed in Table 3. Each phosphate tetrahedron has three oxygen atoms linked to other tetrahedra and one unlinked oxygen atom. The individual values for the chemically equivalent bonds agree well within their e.s.d.'s of 0.03 to 0.04 Å. The average dimensions are

### $PO(linked) = 1.56 \pm 0.015$ , P-O(unlinked) = 1.49 \pm 0.025 Å

and  $\angle P-O-P=145^{\circ}$ ; the two types of O-P-O angle average 116° and 103°.

| Table 3. Dimensions in $(P_2O_5)_{\infty}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $\begin{array}{l} P(1)-O(1) = 1.56 \text{ Å} \\ P(1)-O(4) = 1.56 \\ P(2)-O(1) = 1.56 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{l} P(2)-O(4) \ = \ 1{\cdot}57 \ \text{\AA} \\ P(1)-O(2) \ = \ 1{\cdot}49 \\ P(2)-O(3) \ = \ 1{\cdot}48 \end{array}$ |  |  |  |  |  |
| $\begin{array}{l} \label{eq:2.1} & P(2) - O(1) - P(1) = 148 \frac{1}{2}^{\circ} \\ & \slashed{eq:2.1} \\ & \slashe$ | $\begin{array}{l} \label{eq:2.1} \begin{tabular}{lllllllllllllllllllllllllllllllllll$                                              |  |  |  |  |  |

These bond lengths differ considerably from those in  $P_4O_{10}$  molecules, for which the best estimates are P-O(linked) = 1.60 Å,(Cruickshank, 1964) P-O(unlinked) = 1.40 Å and  $\angle$  P-O-P = 124°. In both structures the P-O-P angles are probably determined by the connectivities of the structures. Within one molecular sheet of the present structure, there are non-bonded contacts between O(2') and O(4) of 2.94 Å and between O(2') and O(1) of 3.01 Å, which are typical values for the van der Waals contacts between sheets. If the P–O–P angles were both reduced to the more typical value of  $132^\circ$ ,  $O(2') \cdots O(4)$  would be reduced by about 0.1 Å and  $O(2') \cdots O(1)$  by about 0.25 Å. It is thus likely that the P-O-P angles are determined by the need to allow comfortable van der Waals distances within the molecular sheets.

If the P–O–P angles are regarded as determined, the lengths of the P–O bonds in the two structures then fall into an intelligible pattern. For in the openedout P–O–P angle of  $(P_2O_5)_{\infty}$ , the oxygen p orbit lying in the P–O–P plane can play a part in the  $\pi$ -bonding system of the structure. Consequently relative to  $P_4O_{10}$  the P–O(linked) bonds are contracted and, owing to the sharing of the  $\pi$  character, the P–O (unlinked) bonds are lengthened.

There are a large number of inter-layer contacts. The O(3) at  $z = \frac{1}{4}$  of the layer shown in Fig. 1 makes no less than 12 contacts to atoms in the layer above. These are in sets of six to atoms at  $z = -\frac{1}{4}$  or  $\frac{3}{4}$  (except O(4) at  $z = \text{O or } \frac{1}{2}$ ), and the distances are O(4')  $\cdots$  O(3) = 3·24, O(2')  $\cdots$  O(3) = 3·18, P(1')  $\cdots$  O(3) = 3·23, O(1')  $\cdots$  O(3) = 2·98, P(2')  $\cdots$  O(3) = 3·06 and O(3')  $\cdots$  O(3) = 2·95 Å. O(3) also contacts the P(1) (3·24) and O(4) (3·05) at the positions ( $\frac{1}{2} + x, \frac{1}{2} - y, z$ ). The shortest contact of the whole structure is 2·86 Å between O(4) at ( $\frac{1}{2} + x, \frac{1}{2} - y, z$ ) and O(2).

I should like to thank Professor MacGillavry for letting me have the  $|F_o|$  for this structure.

#### References

CRUICKSHANK, D. W. J. (1964). Acta Cryst. 17, 677. MACGILLAVRY, C. H., DE DECKER, H. C. J. & NIJLAND, L. M. (1949). Nature, Lond. 164, 448.